volume of the reaction mixture is halved, the partial pressure and the concentration are doubled. We obtain the reaction quotient by replacing each equilibrium concentration by double its value.

$$Q_{c} = \frac{\left[CH_{4}(g)\right]\left[H_{2}O(g)\right]}{\left[CO(g)\right]\left[H_{2}(g)\right]^{3}}$$

As $Q_{c} < K_{c}$, the reaction proceeds in the forward direction.

In reaction $C(s) + CO_2(g) \rightleftharpoons 2CO(g)$, when pressure is increased, the reaction goes in the reverse direction because the number of moles of gas increases in the forward direction.

7.8.3 Effect of Inert Gas Addition

If the volume is kept constant and an inert gas such as argon is added which does not take part in the reaction, the equilibrium remains undisturbed. It is because the addition of an inert gas at constant volume does not change the partial pressures or the molar concentrations of the substance involved in the reaction. The reaction quotient changes only if the added gas is a reactant or product involved in the reaction.

7.8.4 Effect of Temperature Change

Whenever an equilibrium is disturbed by a change in the concentration, pressure or volume, the composition of the equilibrium mixture changes because the reaction quotient, Q_c no longer equals the equilibrium constant, K_c . However, when a change in temperature occurs, the value of equilibrium constant, K_c is changed.

In general, the temperature dependence of the equilibrium constant depends on the sign of ΔH for the reaction.

- The equilibrium constant for an exothermic reaction (negative ΔH) decreases as the temperature increases.
- The equilibrium constant for an endothermic reaction (positive ΔH) increases as the temperature increases.

Temperature changes affect the equilibrium constant and rates of reactions.

Production of ammonia according to the reaction,

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g);$$

$$\Delta H = -92.38 \text{ kJ mol}^{-1}$$

is an exothermic process. According to Le Chatelier's principle, raising the temperature shifts the equilibrium to left and decreases the equilibrium concentration of ammonia. In other words, low temperature is favourable for high yield of ammonia, but practically very low temperatures slow down the reaction and thus a catalyst is used.

Effect of Temperature – An experiment Effect of temperature on equilibrium can be

demonstrated by taking NO_2 gas (brown in colour) which dimerises into N_2O_4 gas (colourless).

 $2NO_2(g) \rightleftharpoons N_2O_4(g); \Delta H = -57.2 \text{ kJ mol}^{-1}$

NO₂ gas prepared by addition of Cu turnings to conc. HNO₃ is collected in two 5 mL test tubes (ensuring same intensity of colour of gas in each tube) and stopper sealed with analdite. Three 250 mL beakers 1, 2 and 3 containing freezing mixture, water at room temperature and hot water (363K), respectively, are taken (Fig. 7.9). Both the test tubes are placed in beaker 2 for 8-10 minutes. After this one is placed in beaker 1 and the other in beaker 3. The effect of temperature on direction of reaction is depicted very well in this experiment. At low temperatures in beaker 1, the forward reaction of formation of N_2O_4 is preferred, as reaction is exothermic, and thus, intensity of brown colour due to NO₂ decreases. While in beaker 3, high temperature favours the reverse reaction of

Fig. 7.9 Effect of temperature on equilibrium for the reaction, 2NO, (g) \rightleftharpoons N₂O₄ (g)

EQUILIBRIUM

formation of NO_2 and thus, the brown colour intensifies.

Effect of temperature can also be seen in an endothermic reaction,

At room temperature, the equilibrium mixture is blue due to $[CoCl_4]^{2-}$. When cooled in a freezing mixture, the colour of the mixture turns pink due to $[Co(H_2O)_6]^{3+}$.

7.8.5 Effect of a Catalyst

A catalyst increases the rate of the chemical reaction by making available a new low energy pathway for the conversion of reactants to products. It increases the rate of forward and reverse reactions that pass through the same transition state and does not affect equilibrium. Catalyst lowers the activation energy for the forward and reverse reactions by exactly the same amount. Catalyst does not affect the equilibrium composition of a reaction mixture. It does not appear in the balanced chemical equation or in the equilibrium constant expression.

Let us consider the formation of NH_3 from dinitrogen and dihydrogen which is highly exothermic reaction and proceeds with decrease in total number of moles formed as compared to the reactants. Equilibrium constant decreases with increase in temperature. At low temperature rate decreases and it takes long time to reach at equilibrium, whereas high temperatures give satisfactory rates but poor yields.

German chemist, Fritz Haber discovered that a catalyst consisting of iron catalyse the reaction to occur at a satisfactory rate at temperatures, where the equilibrium concentration of NH_3 is reasonably favourable. Since the number of moles formed in the reaction is less than those of reactants, the yield of NH_3 can be improved by increasing the pressure.

Optimum conditions of temperature and pressure for the synthesis of $\rm NH_3$ using catalyst are around 500 °C and 200 atm.

Similarly, in manufacture of sulphuric acid by *contact process*,

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g); K_c = 1.7 \times 10^{26}$ though the value of *K* is suggestive of reaction going to completion, but practically the oxidation of SO_2 to SO_3 is very slow. Thus, platinum or divanadium penta-oxide (V_2O_5) is used as catalyst to increase the rate of the reaction.

Note: If a reaction has an exceedingly small *K*, a catalyst would be of little help.

7.9 IONIC EQUILIBRIUM IN SOLUTION

Under the effect of change of concentration on the direction of equilibrium, you have incidently come across with the following equilibrium which involves ions:

 $Fe^{3+}(aq) + SCN^{-}(aq) \rightleftharpoons [Fe(SCN)]^{2+}(aq)$

There are numerous equilibria that involve ions only. In the following sections we will study the equilibria involving ions. It is well known that the aqueous solution of sugar does not conduct electricity. However, when common salt (sodium chloride) is added to water it conducts electricity. Also, the conductance of electricity increases with an increase in concentration of common salt. Michael Faraday classified the substances into two categories based on their ability to conduct electricity. One category of substances conduct electricity in their aqueous solutions and are called *electrolytes* while the other do not and are thus, referred to as nonelectrolytes. Faraday further classified electrolytes into strong and weak electrolytes. Strong electrolytes on dissolution in water are ionized almost completely, while the weak electrolytes are only partially dissociated. For example, an aqueous solution of sodium chloride is comprised entirely of sodium ions and chloride ions, while that of acetic acid mainly contains unionized acetic acid molecules and only some acetate ions and hydronium ions. This is because there is almost 100% ionization in case of sodium chloride as compared to less than 5% ionization of acetic acid which is a weak electrolyte. It should be noted that in weak electrolytes, equilibrium is